

Funded bythe European Union

Multi-Hazard Indicators

YoungHwa Cha¹, Marcello Arosio² and Christopher White¹

1. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK. 2. Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy.

1. Research Scope

MEDiate: Multi-hazard* and Resilient-informed system for Enhanced Local and Regional Disaster risk management

- MEDiate aims to enhance assessment of disaster risks and to improved disaster risk management and governance by:
 - ✓ Developing a decision-support system (DSS)
 - Considering multiple interacting natural hazards and cascading impacts
 - Using a novel resilience-informed, service-oriented, and peoplecentred approach

2. Aim of Research

To develop and test multi-hazard indicators that are suitable for use in risk-based assessments and decisions making in disaster risk management.

- **Testbeds**: Oslo (Norway), Nice (France), Essex (UK), and Múlaþing (Iceland)
- **Project Consortia:** A multi-disciplinary team of 18 partners from six European countries

*Multi-hazard (MH): the specific contexts where hazardous events may occur simultaneously, cascadingly or cumulatively over time, and taking into account the potential interrelated effects (UNDRR, 2017).

3. Methods: the process of developing multi-hazard indicators

Fig 3. The annual frequency of compound

events (i2) of extreme wind and rainfall for two

periods (1981-2000 and 2030-2049) in TB3.

Systemic literature review Studies include multi-hazard analysis: • Multi-layered single-hazard: 87		Stakeholder workshops	Indicator selection	Application to testbeds			
Ś	Studies include multi-hazard analysis:	A total of 55 participants	i1. Trends in co-occurrence	Testbed	Multi-hazard pair	Interaction typology	
•	Multi-layered single-hazard: 87	shared their preferences at	frequency	Oslo	Coastal and riverine flood	Multivariate	
•	Multi-hazard (MH): 84	focus group workshops in	i2. Joint return period (JRP)	Nice	Extreme heat and drought	Temporally compounding	
MH indicator types: MH interactions, MH joint probability, Hazard probability, Hazard intensity, Hazard	Oslo (6), Nice (21), Essex (22), and Múlaþing (6).	i3. Spatial distribution of co-occurrence	Essex Múlaþing	Extreme wind and rainfall Heavy rain and landslide	Spatially compounding Preconditioned and		

4. Results

Fig 1-4 show results of the **MH indicator application to the testbeds**, drawn from the single hazard variables listed in the table below.

The application of **indicators i1**, **i2**, **and i3** varies by the relevant **multi-hazard pairs** in each testbed, depending on the **available datasets**.

Captured the **complex dynamics of MH assessment** and explored for effectively communicating by **codeveloping MH indicators with the stakeholders**.

Fig 2. The probability of JRP **(i1)** for heavy rain (1:50 years) and landslide (sNAPI – 1:2 years) events increases by 36% in the future (2020–2100) compared to the baseline (1979–2017) in **TB4.**

Fig 1. The spatial distribution of co-occurrence (i3) - at least one co-occurrence event of drought and heatwave each year from 1970 to 2100 across **TB2.**

Fig 4. The annual frequency of multivariate compound events **(i2)** of coastal and riverine floods from 1968 to 2022 in **TB1**

Multi-hazard indicators drawn from assessment of the primary interacting hazards (TA1)

5. Next step

The MH indicators will be:

- Incorporated into the risk and resilience assessment (TA7).
- Tested through a series of stakeholder workshops across the testbeds.
- Presented through the Web-based MEDiate DSS platform.

Test beds	Multi-hazard pairs	Interaction type	Single hazard variables	Threshold (percentile)		N. of joint extreme events		i1	i2	i3
				Baseline	Future	Baseline	Future			
Oolo	Coastal and riverine flood	Multivariate	Weekly average surge height (m)	90 th	90 th	- 20	27	v		
USIO			Weekly average river flow (m ³ /s)	90 th	90 th				V	
	Extreme heat	Temporally compounding	Standardised Precipitation Index (SPI3)	<=1	<=1		-	v		
NICE	and drought		3 consecutive hot days	90%	90%					V
Essex Extreme wind and rainfall	Extreme wind	Spatially compounding	Daily maximum wind speed of gust at 10m (m/s)	97 th	97 th	46	115	V	V	
	and rainfall		Daily precipitation (mm)	90 th	85 th					
Múlaþing Heavy ra lands		Preconditioned and triggering	1d rain/1d rainfall intensity/scaled and	90th	90th	- 54	184			
			Normalised API* (sNAPI)	90th	85th					
	Heavy rain and						v	V		
	landslide		5d rain/sNAPI	90th	90th	46	71			
				85th	90th					